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INFLUENCE OF RIBS ON STREXGTH OF SPARS.*

By L. E+lenstedt.

.

Zn calculating the strength of

sumption is usual that the ribs are

airplane wing spars, the as-

connected to the spars by

flexible joints. This assumption is not accurate, as the ribs

are attaohed very firmly to the spars by means of brackets, nails

and glue. This method of attachment is so rigid, with reasombly .

good workmanship, that it is justifiable to assume ihat the ribs

are rigidly attached to the spars.

The aim of the following investigation is to determine what

effect this type of joint has on the strength of the spars. The

investigation was suggested by the striking fact that the praoti-

cal loading tests generally gave greater strength and smaller de-

flection than strength oaloulationsbased on the assumption of

ribs attached by flexible joints, The difference was particularly

noticeable, with heavily offset loading and arises from the fact

that tke more heavily loaded spar transmits a portion of its load

through the ribs to the-more lightly loaded spar.

Fig. 1 shows the framework of the wing in perspective. It

consists of two spars with nine ribs, and rests on points A - B -

c - D. A statically determinate system is produced, when all the

ribs are cut through with the exception of the rib A - C (hatched

in Fig. 1). Two simple spars A - B and C - D are thus obtained,

* From Technische Berichte, Volume 111, No. 4, pp. 100-107. (1918).

.
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?he Rib A - G is required in ozder to prevent the s~srs from turn--

ing about their longitudinal axis. For symmetry, the central rib

might be consideredas part of the statically determinate system

and the rib A - C could then be cut, but this is not of advantage

in the computation, since it makes the determination of the dis-

placement ~aa, bab .... ete. T?IOr5 complicated. At the points of

section of the ribs, three unknowns generally app-r: longitudinal

force, shearing force and bending moment, and the system is, there–

fore, 3X8 = 24-fold static~.llyindeterm~nate.

In order not to complicate the investigation unnecessarily, the

following assumptions may be made, viz:

1. The external forces act at right angles

through the longitudinal axis of the s~rs. The

forces in the (straight) ribs will then be zero.

2. The moments of inertia and the areas of

tions are equal and the external forces act only

on the ribs. The bending moments in the central

ribs thus become zero. The strict proof of this

Appendix in order not to interrupt the course of

to the plane

longitudinal

the two spar sec-

on the spars, not

portions of the .

is put in the

the analysis.

Besides, the arrangement shows at once that the elastic lines of

the ribs must have a point of flexion at the center i, Fig. 11,

since the angle of torsion A ~, of corresponding cross-sections

of the two spars must be equal with equal cross-section and without

load on the ribs.

The wing frame is now only eight-fold statically indeterminate.

— .
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.L, C=lcul.ationof coefficients of the unknowns.

With loads & = -1, Xb = -1, Xc = -1, etc., etc.

ribs are subjected to bending,

sional stresses (Fig. 2).

In general, let -
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* ~[~~ler-Bre~~u: ‘Die neueren Xethoden der F’estigkeitslehreund der “
Statik der Baukonstruktionen” (Recent methods of the theory of the
statioal strength of framed structures), T.B.1913, p.209.
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Further, let -

I denote the equatorial moment Of irtextia of the Eprsj

1, ~ ‘“ fi Ill! ff 1! n ribs,

1P It “ polar.moment of inertia of the spars,

E“ 1: modulus of elasticity,

s 11 n 11 ‘fshearing,

and we get -

6 -7 =%5X+1 %?? ~+f %+ dz,*
Pq--- E I P“ 1

where the first two integrals are taken over both spars and the

last one over all the ribs. The section of the spar has~ for the

sake of simplicity,’been assumed to be circular or annular.

this is riotthe case, it becomes necessary to introduce the

pression -

t 1~ F4

4 Ix Iy
or, according to Saint Venant, —

40 Ip

in place of *
‘P”

On the assumption, which corresponds
.

that

Il=~I; 1P =21; S=~E

If

ex-

with actual conditions,

we obtain -

EI 5pq=~Mp Mq dx+ $Tp Tq dx+ 6~Mp

The evaluation of E x I x 5.follows at once from Figs, 3 to

* Ibid p.211 and 255.
** l!Huttetl22nd edition, Vol. I, pp. 570-1.
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with Table 1. The calculation of EXIx6bd

here for easy comprehension. The bending and

produced in the sprs under the con’titions,

~b = -1, Xd = -1, are indicated in Figs. 4 and 6, Fig. 7 shows

the bending moment in the rib b or d, and in the end rib

A - c* The distance between the ribs is taken as s, and the d~s”~.

tance between the spars at the same time as 2s. By reason of the

load Xb = -1, pressures arise in the spars of the magnitudes

*: and + ~ and the bending moments on the s~rs, for the

parts from A and C as far as to the rib bJ are, therefore:

Mb= **sx

from rib/?o rib d:

from rib -d to rib h:

In the

A and

same manner, from Xd = -1 (Fig. 6) for the parts from

C up to rib b, there arises the moment: \

~d = *4X
8

From rib b to rib d:

From rib d to rib h:



Thus me obtain:

f% Mq dx=

2s

d
=Z[:x:x

+3 ~
+.-__xr

o

The torsional

For the parts fzom

To=ts

moments of the spars arising from Xb = -1 are:-

A and C to rib b:

From rib b to rib h:

‘b = O (See Fig. 4).

and from Xd = -1

for parts from A and C to rib d:

T&=+s

From rib d to rib h

Td=O

Henoe -

4 2s 16 s3
$f Tp Tqdx=Z~J s s dx=~ .

6;

and finally from Xb = -1, there arises in the rib b and in the

end rib AC the bending moment L!b= A z (compare Fig. 7).

For the remaining ribs we find Mb = O.

In the same manner, we obtain with Xd =

and in the end rib AC: ~ = t z and in the

~d = O.

-1 in the rib d

remaining ribs,
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We therefore, get -

6J~~p~dz=26~zz dz=4ss

The integral extends here only over the end rib beoause

~ = O for all the other ribs, Thus, we obtain -

The other coefficients of the unknowns given in Table 1 have

determined in a similar manner.

2. Determination of ZPm x bmq.

In the ease where the same load P acts at each node of a

spar, we have in general: ZPm bmq = P Z5mq. Siricethe loads

P act at the same points of the Spars as the shearing forces

Xa, Xb, Xc, etc., and as they only produce bending moments in the

one SFar, the values &q may be taken direct from Table 1,

column 1.

E I ZPm &ma = +(49+81+95+94+81+ 59+

~2P 63>+ 31) S3 = 245

. E 1 ZPm bmb = ~ (81 + 144 + 175 + 176 + 153 +

450+112+!59)s3= ~Ps%

E I. ZPm bmc = *2 (95 + 175 + 225 + 234 + 207 +

+153 +81) s3=~ ps3,
.
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E I Spn ~md = -&(94+176+234+2%+234 +

532 p ~~+ 176 -i-94) S3 = ~2

5:gp~3, ”E I ZPm &me=E I ZPm &mc=—

E I XPm %lf =E I ZPm ISmb=~p S3>

E I ZPm 6mg=E I ZPm 5ma=~ps3,

E I ZPm bmh = O.

3. Caloiiation of the unlalowns.

We obtain:

1. l~7Xa + 161Xb + 175xc + l~~$d

+ Ilug + 80Xh = 2~~,

2. 161Xa + 304xb + 2S7XC + 288Xd

+ 17~g + ll~xh = 450p,

3, 17~a + %?Xb + 41’?X~+ 378Xd

+ 2Z5xg + ~44xh = 585P,

4. lvaa + 288xb + 3?8xc.+ 480xd

+ 270Xg + 176Xh = 632P,

+ 161Xe + 139Xf +

+ 265xe + 224Xf +

+ 351Xe + 2~Xf +

+ 410Xe + 352xf +

5. 16& + 266xb + 35~c + 410Xd + 481Xe + 383xf + “

+ 303Xg + 208Xh = 585p,

etc. .



-9

8. 80Xa + lMXb + 144Xc +

+ ~~g + ss~h = O.

Since, from symmetry,
‘g =

.

17GQ + 208Xe + 240Xf +

xa3 Xf = Xb, ~e = Xc,

the first five equtions are sufficient to determine the unknomn.

Equation 8 serves as a check.

1. 288Xa + 3ooXb + 336XC + ~7~d + 80Xh = 245P,

2. 332Xa + 528Xb + 55~c + 288Xd + l12Xh = 450p,

3. 400Xa + 584Xb + 768XC + 3?8Xd + +~xh = 585P.

4* 444Xa + 640Xb + 788XC + 480Xd + 17~h = 632P,

5. 464Xa + 648xb + 832XC + 410Xd + 208Xh = 585P,

8. 2xa + ~b + SC -1- 2xd+ ‘“}”~h= O.

Since the shearing force in the uncut rib is equal to Xh,

owing to the symmetry, it would have been possible to obtain

equation 8 from the eq~tions for moments in the longitudinal axis

of a spar.

We have from the equations 1 to 5:

Xd = + 0.544 P,

xc = + 0.497 P,

Xb = + 0.315P,

xa=- 0.117 P,

Xb = - 0.967 P.

These values put in ewtion S give:
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2 (0.497 + O.315- 0.117 - 0,967) + 0.544 = O,

2 (- 0.272) + 0,544-= o,

0 0.=

Then the forces P - X act on the loaded spar, so that:

Pd = + 0.456 P,
.

Pc = + 0.503 P,

Pb = + 0.685 P,

Pa = + 1.117 P,

ph = + 1.967 P.

4. Bending moments and stresses.

ln Fig. 8, the forces on the loaded spar are plotted as ordi-

nates and the end points

sembles a parabola. The

the loads P were drawn

joined by a smooth curve. The ~rve re-

horizontals which unite the end Eoints of

for comparison. It is known that the load

is transferred from the center to the supprts On a~count of the re

action of the ribs. The maximum bending moment iS .

%nax=ps (2.533x4-1.117X3-O. 685 x2-0i”@33 Xl) =

=4.908Ps

against -

M~aX”= Ps (3.5X4-3-2-1} =8.000Ps.

The maximum bending moment, therefore, only amounts roughly to

49
~ of that obtained when the effect of the ribs is neglected.



The areas of both

Fig, 9: Fig. 10 shows

of the two spars.

moments ham been plotted for comparison in

the course of the moments of torsion on each

The main stress is only slightly increased by the torsional

“momentsas will be seen from the following calculation.

For a circulaz section, for instance, in the section a-b

where the torsional stress is greatest, there arises,

the normal stress: a = *Psr

the shearing

iso than

~ithm=3mdu =
c

‘G”mx = 0.333 ~ +

For the section at the

stress:7 = 1.084P S r
21

1* we obtain the principal stress:

0.667 &+4xo.i137~ a2= 1.02!5 0.

center of the spar we get: ‘

0.272
2 X 4-9~8 o = ()*(3H70,

afmax=0.3330 + 0.667 / 02+ 4X0.027’72 ~2= 1.001 G.

The increase of the principal stresses is, therefore, insig-

nificant both in the section of maximum torsion (2.5%) and in the

section of maximum bending moment (0.1~).

The bending moments in the ribs are also of such magnitude

that they can well

worst case, in the

be obtained from the present sections. In the

rib h -

~1 = = ~hax.0.967Ps=-%

:-
* Compare ‘Hutte” 22nd edition, Volume 1, p.527.
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Since the moment of resist~ce of the ribs is generally 1/6

to 1/8 of the moment of resist.aaceof the spars= theze is no dan-

ger of the ribs being ove~3.oade&

The above investigation demonstrates that the loads are dis-

tributed between the spars in a satisfactory manner by means of

ribs. In general, this results in an

in most cases the external forces act

spars. If the forces act only on one

and on the other spar downwards, then

increase in strength, since

very Wlequally on the two

spar, or on one spar upwards

the gain is considerable,:im

the present instance about 4@. The investi~ation only proves .

this, however, for simpis bending, but similaz ccncl~ions may be

drawn for buckling, as the deflections will be diminished in the

same proportion as the bending ncments.

This favorable zesult bring6 up the question, whether in se-

lecting methods

~roximating the

will not be too

multiple of the

for calculating airplanes, with the object of ap-

actual stresses as closely as possible, the results

unfavorable. The calculation of st~esses with a

load, for instance, is not used for other purposes,

not even in bridge building, where safety is as imFor-~antas in an

airplane.

Would it not be sufficient if factors of safety were determin-

ed from the stresses of unitazy load? Tineb~eaking tests with

wings show that the stresses ~lculated with-unitary load come
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nearest to the actual condition~.

Apart from the fact that ~he calculations with a m~lltipleof

the load frequently lead to im~ossible dimensions of the spar, the

diminished work, at least in the design of new airFlanes, should

not be underestimate~ But even theoretically, it is more correct

to use the rules and formulas within the limits of proportionality

for which alone they hold goo~

Appendix:- For the case where the moments at the center of the

ribs are not zero, there must be introduced for each section

a, b, C, .... h, a moment X’a, X’b, X’c, .... X’h. The elastici-

ty equations, under the

1.

2.

3.

4.

Xa b + Xza

same assumptions

~~t& + Xb 6&”+

-+X’C ac!a+.,.. =

as before, are then

Xlb ~bra + Xc ~ca +

2Pm ~-a,
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If i denotes the point Of appli~tion of any shearing force

X~I and k’ denotes the point XIk, we have, as above:

The

for both

Xi = -1

moIE8nt Xkl = -1 produces the moments Mkl and Tkl

halves of the wing with the same sign. The shearing force

moments Mi and Ti with opposite signs.

From symmetry, we accordingly have:

6ik’ = o

If, therefore, we substitute in equations 1 to 16 -

6~Ia = 6bla=6cI~ =.... =0

6as’ = %aI = 6~~? =.*.. =0

6~,b=6b,~= ~c,b =,... =0

etc.

we obtain two groups of eight equations, each with eight unknown

quantities, of which the first group contains the unknown quanti-

ties Xa, Xb, Xc, etc., and the second group only the unknown quan-

tities X’s, X’b, X’c, etc. The first group agrees with the equa-

tions given at the commenc~ent of the present papez while the seo-

ond group is as follows:
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As the loads P only produce bending moments in the spars

and the loads X’a = -1, X’b = -1, X]c = -1, etc.

bending moments in the ribs ahd torsional moments in

we get

~pm ~a! = XPm ~bt = ZPm 8mc~ ....

only produce

the spars,

The right hand sides of the last eight equations are, there-

fore, zero.

with

For the coefficients of the unknowns,

the previous work:

EI 5a1aI=2@2 dx+4~6

E

EI

E

etc.

Multiplying

we obtain, in accordance

;12 dz=: S + 24 S=

= 80~,

~~?dl ‘.,.. =
3-

12dz=~s,

.2$7 16
bblbl 12dx+4x6[ladz= ~s+

88
+24s= ~ G,

= 2;@x+2x6~12dz= ~s,

by 3/4”me obtain:

.—

1. 2ox1a+llxrb +llXtc+ llxld.+ I-IXie+ llxrf+
a

+ llx’g+ l~xlh=(),

.-



.-
-M*

2.

3.

4.

5.

6.

7.

8.

21X1a+ 22X1b+ 13 Xrc + ~3X]d+ 13

+ 13 xlg+13X’h=%

ll~1~+13~1b+ ls~i=+aex’d+ 1?

+ 17 X’g+ 37x’~=o,

11 Xia + ~3X’b + 15X’c + 17 Xld+ 28

+~9Xfg+19X’h=0,

n X1a + 13”x1b + 15xrc + 1? xi~ + 19

+ 2NPg+ zlx’~ = 0.

~~ X’a+ 13X~b+ 15Xfc + l% Xld+ 2$

+ 32X’g+ 23X’h=O,

11 xf~ + 13x~b + 15xfc + 17 xf~ + J&l

+ 23 Xtg+ 34xth= 0.

These equations can be reduced to the form:

1, 20Xta - ~zb = 0,

2. -9Xta + 20Xlb - 9Xl~ = 0,

3. -9Xrb + 20Xtc - %td = ~,

4. -gx’~ + zoxf~- 9x’~ = 0, .
..** .*.. . . . . . ..s ●

. . . . ● *** ● 9** ● *-* .

..%. *.-* .-.* ..<. .

8. = 0.-9X~g + 20X}h

xre+13X~f+

x!e+15~Tf+

Xle+ 17xff+

~!e+ 19 X’f+

Xfe+ 3ox’f+

Xfe.,+7217X1f++

x’e+ 21xff +
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If we substitute in these equations:

where ZI

we obtain

or,

xf~ =A ZI+B 22,

Xtb = A Z12+ B Z=2,

xf~ =A ZZ3+B Z2~
● *.*. .- 0.. ●

. . . . . .* 9*- c

. ..-. .* *.- *

x’ g = A ZIP+ B aa~

Xlh = A zle+ B Zz~

and Zz are the two real.roots of the equation -

-9z2+20 z-9=0

from equation l.,

20 (AZI+BZ2]-9(AZ32 +Bz=2)=0

A(20z1- 9 Z32) + B,(2O z= - 9 Z22) = 0.

But, by assumption, we have -

20ZI-9Z12=20Z2-9 Z22=+9

whence~ A must equal -B.
\
We find from equation 8:

-9 (Az17+Bz27) +20 (Azle+Bz2e}=0

or, with A equal to -B,

Ac-9z17+20zle+ 9z27-20&~ =0,

A [zl’ (-9 + 20 z;) - z.’ (-9 + 20 z2)I = 0.

But, by assumption:



-9 + 20 z~ = 9 212,

-9+20 za=9za;

therefore,

A (Zlg - Zas) = 0.

Since (21’ - z: ] = o Canno’t

we find that A and, consequently,

this it follows that -

become zero in this equation,

also B must be zero. From

x’~=xtb=xt~...o x;h=~.

Translated bv
National Ad&ory Committee
for Aeronautics.
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